For the following questions, specify which examination they should be in (Exam 1 – Tech free or Exam 2 – Tech Active) then allocate the number of marks and show the marking scheme.

Question 1 Exam 1

Solve $2\cos(2x) = -\sqrt{3}$ for x, where $0 \le x \le \pi$.

$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

$$2x = \frac{5\pi}{6}, \frac{7\pi}{6}$$

$$\therefore x = \frac{5\pi}{12}, \frac{7\pi}{12}$$
B.A. = $\frac{\pi}{6}$

1M – Recognise the basic angle is $\frac{\pi}{6}$ or any correct relative angle to $\frac{\pi}{6}$

1A – both correct answers.

Max 1 mark for correct answers with any incorrect notation/working in the solutions such as $\cos(2x) = \frac{5\pi}{6}, \frac{7\pi}{6}$

Question 2 Exam 1

a. Given that (2x + 1) is a factor of $P(x) = 2x^3 - 9x^2 + kx + 6$, show that k = 7.

If (2x + 1) is a factor of P(x) then $P\left(-\frac{1}{2}\right) = 0$ $2\left(-\frac{1}{2}\right)^3 - 9\left(-\frac{1}{2}\right)^2 + k\left(-\frac{1}{2}\right) + 6 = 0$ $-\frac{1}{4} - \frac{9}{4} - \frac{k}{2} + 6 = 0$ $-\frac{5}{2} + \frac{12}{2} = \frac{k}{2}$ $\therefore k = 7$

1A – Evidence of using factor theorem to solve for *k*.

Accept subs k = 7 and show that $P\left(-\frac{1}{2}\right) = 0$.

Provide an advice if students use this subs method.

b. Hence, fully factorise $2x^3 - 9x^2 + 7x + 6$.

$$(2x+1)(x^2 - 5x + 6)$$

$$\therefore (2x+1)(x-2)(x-3)$$

1M – A valid approach in finding a quadratic factor. Eg: using a synthetic division, long division (not on course but acceptable), need to see $(x^2 - ax + 6)$

1

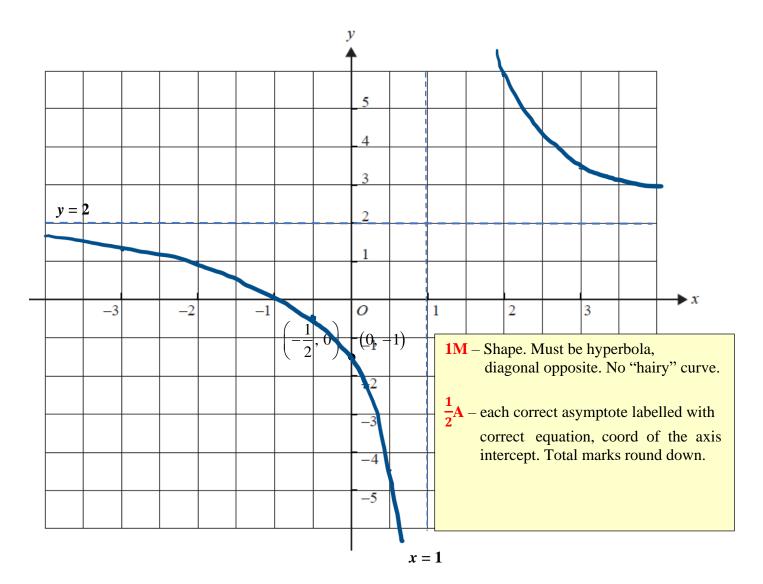
1A – All 3 correct linear factors.

$$\mathbf{0A} - x = -\frac{1}{2}, 2, 3$$

Question 3 Exam 1 can also be in Exam 2

Let
$$f: R\setminus\{1\} \to R$$
, where $f(x) = 2 + \frac{3}{x-1}$.

a. Sketch the graph of f. Label any axis intercepts with their coordinates and label any asymptotes with the appropriate equation.



b. Find the area enclosed by the graph of f, the lines x=2 and , and x=4 the -axis.

Area =
$$\int_{2}^{4} 2 + \frac{3}{x-1} dx$$

= $\left[2x + 3\log_{e}(x-1) \right]_{2}^{4}$
= $2(4) + 3\log_{e}(4-1) - (2(2) + 3\log_{e}1)$
 \therefore Area = $4 + 3\log_{e}(3)$

This is a Y12 Exam question

1M – A definite integral, must have log and terminals of 2 and 4 in any order.

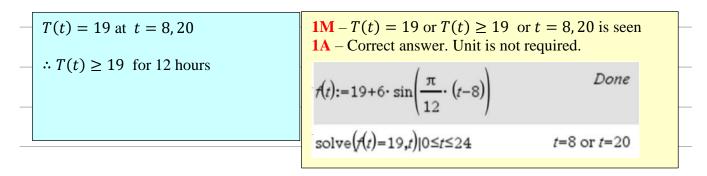
1A – Correct answer, accept $4 + \log_e 27$ or $4 + \log_e 3^3$

Question 4 Exam 2

The temperature, T °C, in an office is controlled. For a particular weekday, the temperature at time t, where t is the number of hours after midnight, is given by the function

$$T(t) = 19 + 6\sin\left(\frac{\pi}{12}(t-8)\right), 0 \le t \le 24.$$

a. For how many hours of the day is the temperature greater than or equal to 19 °C?



b. What is the average rate of change of the temperature in the office between 8.00 am and noon?

$$\frac{T(12)-T(8)}{12-8} \text{ or } \frac{3\sqrt{3}+19-19}{12-8}$$

$$= \frac{3\sqrt{3}}{4}$$

$$\frac{1M - \text{ apply the average rate of change formula correctly.}}{1A - \text{ Correct answer, unit is not required.}}$$

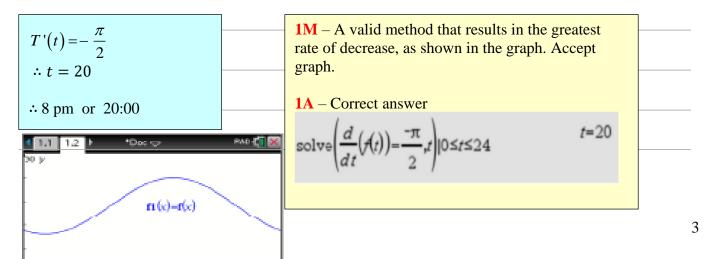
$$\frac{f(12)-f(8)}{12-8}$$

$$\frac{3 \cdot \sqrt{3}}{4}$$

c. i. Find T'(t).

$$\frac{\pi}{2}\cos\left(\frac{\pi}{12}(t-8)\right)$$
or
$$-\frac{\pi}{2}\cos\left(\frac{\pi}{12}t+\frac{\pi}{3}\right)$$
1A – Correct answer Accept t or x

ii. At what time of the day is the temperature in the office decreasing most rapidly?



Question 5 Exam 2

Let
$$g: R \to R$$
, $g(x) = x^4 - 8x$.

a. Find the equation of the tangent to the graph of y = g(x) at the point (p, g(p)).

$$y = 4(p^3 - 2)x - 3p^4$$

1A – Correct answer, must be an equation.

$$y=$$
tangentLine $\left(x^{4}-8\cdot x,x,p\right)$

$$y=4\cdot \left(p^{3}-2\right)\cdot x-3\cdot p^{4}$$

b. Find the equations of the tangents to the graph of y = g(x) that pass through the point with coordinates $\left(\frac{3}{2}, -12\right)$.

$$y = 4(p^3 - 2)x - 3p^4 \text{ passes through } \left(\frac{3}{2}, -12\right)$$
$$-12 = 4(p^3 - 2)\left(\frac{3}{2}\right) - 3p^4$$
$$\therefore p = 0, 2$$

Equations of the tangents are: y = -8x and y = 24x - 48

1M - A valid approach to find the values of p or

$$p = 0$$
, 2 is seen.

1A– Each correct equation.

solve
$$(-12=4 \cdot (p^3-2) \cdot x-3 \cdot p^4 p) | x = \frac{3}{2}$$

$$p=0 \text{ or } p=2$$

$$y$$
=tangentLine $\left(x^4-8\cdot x,x,p\right)|p=\left\{0,2\right\}$
 $y=\left\{-8\cdot x,24\cdot x-48\right\}$

Question 6 Exam 1

Let
$$f: R \setminus \{-2\} \rightarrow R$$
, $f(x) = \frac{2x+1}{x+2}$

Find the rule and domain of f^{-1} , the inverse function of f.

For inverse function, swap *x* and *y*:

$$x = \frac{2y+1}{y+2}$$

$$x(y+2) = 2y+1$$

$$xy-2y=1-2x$$

$$y(x-2) = 1-2x$$

$$y = \frac{1-2x}{x-2}$$

$$f^{-1}(x) = \frac{1-2x}{x-2} \text{ or } f^{-1}(x) = \frac{2x-1}{2-x} \text{ or } f^{-1}(x) = \frac{-3}{x-2} - 2$$

$$domain = R \setminus \{2\}$$

1M – swap *x* and *y* and a good attempt of solving for *y*.

1A – Correct inverse rule. Do not accept $y = \text{or } f^{-1} = \dots$

4

1A – Correct domain

Question 7

Solve $\log_3(x) - \log_3(2(x^2 - 9)) = -2$ for x.

$$\log_3\left(\frac{x}{2(x^2-9)}\right) = -2$$

$$\frac{x}{2(x^2-9)} = 3^{-2}$$

$$9x = 2\left(x^2 - 9\right)$$

$$2x^2 - 9x - 18 = 0$$

$$(2x+3)(x-6)=0$$

$$\therefore x = -\frac{3}{2}, 6$$

$$\therefore x = 6$$

1M – A correct use of log law

1H – Form a quadratic equation and solve their equation correctly.

1A – Correct answer